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 Modifiable synapses (for example, those subject to LTP or LTD) can store a small amount of 

information about the history of local events. The expression of this information is often assumed to be 

through long-term changes of a single variable (the synaptic efficacy or weight), interacting with the short-

term dynamic properties of synapses and neural codes (4). Given this assumption, one might think that long-

term storage of only one variable parameter would be required, since only one is expressed. Most theory-

driven synaptic learning rules indeed assume just one long-term variable, albeit subject to changes that may be 

complex functions of the local conditions (including states of pre- and post-synaptic terminals, neighbouring 

synapses and neuro-modulators, as well as precise relative timing of their changes). This restriction is actually 

a profound constraint on the computational power of a synapse, even in models where the expression of stored 

information is limited to a simple weight. The value of multiple modifiable mechanisms in this context may 

help to throw light on why there is a diversity of physiological mechanisms for long-term changes, both pre- 

and post-synaptic, in real synapses (3). 

 A single modifiable parameter easily provides a running tally (over what may be very long periods) of 

a frequency or probability - for example, the frequency of near-simultaneous depolarisations of pre- and post-

synaptic cells, as in the many postulated variants of the Hebb synapse. Suppose, however, that a synaptic 

weight should not just reflect the frequency with which a cell A has participated in the firing of cell B (as 

proposed by Hebb), but a true statistical association between pre- and post- synaptic activation. A large weight 

should then indicate that concurrent activity has been more frequent than expected by chance coincidence. 

Such an association implies that P(A&B) >P(A)P(B), involving comparison of 3 parameters that are altered in 

different ways by events in the history of the synapse. There are 3 degrees of freedom in the joint probabilities 

for 2 events, and correct updating requires the continuous holding of 3 variables. There must therefore be 3 

separately modifiable physiological parameters for a synapse to be able to adapt to, and quantify correctly, the 

inferences about postsynaptic activity that are deducible, on the basis of learning, from the presence or 

absence of presynaptic activity. 

 A Bayesian framework for combining such inferences, from relatively independent data arriving at 

different inputs to a cell, suggests that a useful synaptic computation would be the log-likelihood ratio, or 

weight of evidence (2) for activity in B afforded by activity in A: w=log(P(A|B) / P(A|not-B)). This is the 

statistic that sums linearly for independent data, and therefore approximately matches the neural summation of 

postsynaptic currents. If a synapse can do without information about the absolute frequencies of A and B, then 

this statistic can be estimated with just 2 continuously modifiable parameters, but the additional discarded 

information (requiring a third modifiable parameter) would be necessary if, in a changing environment, the 

weight is to reflect the history of events over a defined period of time. 

 This need for multiple modifiable parameters arises even with a single statistic expressed as the 

synaptic weight.  In addition, synapses may usefully store statistics accumulated over different timescales (e.g. 

transient and consolidated memory expressed through binary and graded mechanisms in series (1)), while 

variation of the parameters of synaptic dynamics (4) offers scope to express several statistics, requiring 

additional modifiable mechanisms. 
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HOW  MANY  MODIFIABLE  MECHANISMS 

DO  MODIFIABLE  SYNAPSES  NEED? 

A. R. Gardner-Medwin 

Three distinct concepts: 

1.  
How many (and which) 

local parameters are 

involved in causing 

long-lasting synaptic 

modifications? 

2.  
How many (and which) 

independently modifiable 

mechanisms operate 

within a modifiable 

synapse? 

3.  
How many parameters 

are needed to 

characterise changes of 

expressed function in a 

modified synapse? 

 

Many - e.g. pre- and 

post-synaptic electrical 

and chemical 

conditions, precise 

timings of activity, and 

neuromodulators.    

 

Several - often with 

different timecourses 

and conditions for 

modification, and 

with complex 

interaction. 

 

 

Possibly (and certainly in many 

models) as few as one - a synaptic 

‘efficacy’ or ‘weight’ - though 

varying synaptic dynamics (e.g. 

facilitation and fatigue, etc.) may 

usefully express more than one. 

Local synaptic computations 

Modifiable synaptic parameters can only depend on the history of local conditions - not, for example, 

on patterns of activity across many cells.  This presents an interesting and profound constraint on 

neural network computations, but from a theoretical standpoint there is no constraint on how many 

local parameters may be involved and how  complex the functions may be (1, above).  

A puzzle and a challenge: 

Where modification is expressed by variation of a single synaptic weight (3, above) then it is tempting 

to think that a single modifiable storage mechanism (2, above) would suffice.  Is this correct?   

This poster aims to show that the answer is NO!  Multiple independent storage mechanisms 

are sometimes necessary within a synapse to compute potentially important functions, even 

when these are expressed through only a single parameter.  

This argument is not the only reason why synapses might require multiple modifiable mechanisms -  

models have suggested useful roles for independent mechanisms that have different timecourses of 

memory retention and for ways in which the dynamics, as well as the strength, of a synapse may be 

varied.  But the issue addressed here is particularly interesting because it may seem counter-intuitive. 

What does a Hebb synapse compute? 
The Hebb synapse (and its many variants) strengthen : 

  “when the presynaptic terminal contributes to firing the postsynaptic cell”   

Such potentiation is often said to depend on pre- and post-  association.  But strictly, it depends not 

on a statistical association of pre- and post-synaptic firing, but on temporal coincidence (within some 

time-frame) of such firing, which may be due to chance.  The distinction can be crucial when learning 

is to be used for inference. 
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Modulation of pre- & post-

synaptic firing coincidences 

without statistical association 

Blue lines show the probabilities of independent 

pre- and post-synaptic firing and the conjoint 

firing (PA&B = PA .PB).  Black lines show running 

synaptic frequency estimates based on single 

weight parameters that undergo fixed increments 

when the events occur, and exponential 

relaxation at other times (time constant 20 units). 

The graph based on coincidences (A&B) is 

analogous to a Hebb synapse, with substantial 

coincidence- dependent potentiation despite the 

absence of any pre & post- synaptic association. 
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What is an appropriate synaptic measure of statistical association?  

Neurons make a ‘decision’ about when to fire on the basis of ‘evidence’ in the activity of their afferent 

axons.  In many learning situations a Bayesian approach to this decision seems appropriate, where the 

evidence is used to establish the conditional probability that, with such evidence in the past, the 

postsynaptic cell has actually fired.  When there is no association (i.e. pre- and post- synaptic firing have 

been statistically independent) then the pre-synaptic firing provides no evidence about whether firing 

should currently be elicited. 

Since simple dendrites tend often to sum synaptic currents approximately linearly, the appropriate 

synaptic strength should on this basis be an evidence function (  ) that sums linearly for different 

(sufficiently independent) pieces of evidence, to compute a conditional probability. This is the log 

likelihood ratio:- 

 = Evidence for firing of B, given firing of A =  log ( P( A | B )  / P( A | not-B ) )     [1] 

where P(A|B) means the conditional probability of A, given B.  The summed synaptic influence, given 

such a measure of association, is the increment (above an a priori level without any evidence) for 

log(P/(1-P)) for the firing of cell B, known as a belief function b  or log-odds :-  

 b     =     log ( P(B) / (1- P(B) )  =        (   from afferent fibres )    +     b O       [2] 

 

Computation of an evidence function 

Evidence [1, above] is fairly easily computed, but depends on the full 3 degrees of freedom of the 

contingency table for the combined probabilities of two random variables (pre- and post- synaptic 

firing).  It requires either 3 or (with loss of information about the rate at which data has been 

collected - ok if associations are assumed to be unvarying) at least 2 modifiable synaptic 

mechanisms for storage of independent variables.  Simply storing the current evidence function  

itself is not sufficient, because the way it changes in response to a particular contingency, like the 

joint firing of A and B, depends not just on the current value of , but on the separate values of 

other parameters, such as the conditional probabilities P(A|B) and P(A|not-B). 
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Increase of 

probability of firing 

of both A, B with 

strong  correlation 

Increase of probability 

of firing of both A, B 

but with no correlation 

Simulation results 
(mean ± s.d. from 10 simulations)  

A 

B 

A&B 

1. Estimates of pre-, post- and paired 

firing probability per time unit, with a 

relaxation time constant of 100 units. 

True probabilities shown in blue.  Each 

estimate would require one modifiable 

mechanism and one stored parameter. 

2. Evidence for  firing of B conveyed by 

firing of the pre-synaptic  axon A, 

calculated from the above 3 parameters. 

  = ln     P(A&B)  (1-P(B))    

            (P(A)-P(A&B)) P(B)  

Note reduced s.d. during periods with 

more information. 

 

w 

1/g 

 

  = (1-w)d  if A&B active 

  Dw  = -wd  if A active alone 

  =  0  if B active alone 

          (d = .025)  

A 
B 

Dg  =   (1+g)d‘ if B active (d’=0.01) 

 = -g(1+g)d’ if B inactive 

evidence(B|A):   = ln (w/g) 

 [   2 (w-g)/(w+g)  ] 
 summed over active pre- axons 

                                            

Evidence estimated with just 2 modifiable parameters 

In a steady state, evidence can be computed from just 2 

independently variable parameters.  One way to do  

this uses one parameter w that is pre- and  

post- dependent while the other g  is  

purely post- dependent. 

 

The simulation uses the odds ratio for firing of 

B given A [w = P(A&B)/(P(A)-P(A&B)] and the odds 

ratio for firing of B itself  [g = P(B)/(1-P(B)]. 

Computation equations are above. Note that 

1/g rather than g is graphed, to be analogous to 

a component of synaptic efficacy, though g itself 

could be modelled by spine conductance. 

  

Evidence to be summed across active synapses 

is computed as ln(w/g), or approximated by 

simpler functions. With only 2 stored 

parameters, changes of probabilities, even with 

no statistical association, can lead to marked 

transient errors of evidence estimation, as at *. 
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Summary 
  Every expressed synaptic parameter that is modifiable during learning may (depending on an aspect 

of the complexity of its computation*) require two or more separately variable storage mechanisms 

within the synapse for its computation and correct updating. 

  A Bayesian approach to synaptic computation, in which the manipulated parameters are probabilities, 

can give insight into the possible nature and complexity of elementary synaptic learning processes. 

  Appropriate manipulation of probability estimates depends on the statistical model of underlying 

causes (especially in a changing environment) and may require modulation of elementary synaptic 

computation for its optimisation. 

  Constraints of realistic physiology (for example the fact that synapses probably do not switch 

between excitation and inhibition - analogous to evidence for and against activation) provide interesting 

challenges for efficient design. 

  There is seldom talk of ways that modifiable synapses might adaptively change the effect they have 

on dendrites when they are not active. This might be:- 

 (i) a trick that evolution missed (failing to convey useful evidence based on when an axon is silent),  

or  (ii) quantitatively unimportant (because axons are silent most of the time),  

or  (iii) something simply experimentally less tractable than changes of the response to stimulation. 

 

* Can anyone put this in more precise mathematical terminology ? 

takes two 

(at least) 

to tango 


