Impievero Learing

\& Assessment with
Confidence-Based Marking (CBM)

Tony Garóner-Medwin

Sound knaw eqoe needs. strong roots. Find them and think about them !

To be sure of an answer, you must:

- think where it comes from
- relate it to other things
- justify it

CBM marks each answer according to the student's degree of certainty that the answer is correct.

Degree of Certainty :	$\mathrm{C}=1$ (low)	$\mathrm{C}=2$ (mid)	C=3 (high)	No Reply
Mark if correct:	1	2	3	0
Penalty if wrong:	0	-2	-6	0

CBM discourages superficial learning and rewards students who can distinguish rigorous and reliable results from uncertain conclusions or guesses.

Our dissemination project will help you trial it - in any situations where answers are either right or wrong.

The website: www.ucl.ac.uk/lapt

... for all issues (explanation, practice, publications, advice, tools, help).

With CBM you think about justification

.... You gain:
EITHER if you find reasons for high confidence
OR if you see reasons for reservation.
Given your confidence, the best C level is the one with the highest graph.

How well do students discriminate reliability?

For both in-course (i-c) and exam data (ex) the \% correct at each C level is within the optimal band. (The graph shows means \pm 95\% confidence limits, cohort: 331 students).

There are no gender differences, but both sexes (F, M) are more cautious in exams.

What is knowledge anyway?

\square	knowledge	
\square	uncertainty	decreasing confidence
0	in what is true,	
\square	misconcenception	increasing confidence
\square	in what is false	
\square	delusion	

Knowledge is justified true belief. Proper justification requires understanding.
What is understanding?
To understand = to link correctly the facts that bear on an issue.
(This is how you tell a student from a parrot!)

Nuggets of knowledge

Principles that students seem readily to understand :-

- If you don't know when knowledge is reliable, you will have problems in later learning
- confident errors are worse than ignorance: a wake-up call (-6!) to attend to explanation
- expressing uncertainty when you are uncertain is a good thing (t.blair please note!)

Does CBM favour certain personality types?

- Practised students show neither gender or ethnic differences
- Diffident \& self-confident people may be attractive - but should not generalise this inappropriately to academic conclusions
- 'Correct' calibration is objective, desirable and trainable with experience \& feedback from CBM

THE PROBLEMS OF CONFIDENCE

Practical Issues (see handout for more detail)

- Use software at UCL, or install it yourself. Help is available, e.g. linking to a VLE
- CBM applies to any discipline, and you don't need any special question types
- Your students will like CBM (if your questions are good!) and want it in exams
- In exams, CBM scores have greater reliability (mean Cronbach $\boldsymbol{\alpha}=0.975$ vs. 0.873 for \% correct, 6 exams, $\mathrm{P}<0.001$), giving better discrimination with shorter exams.

We fail if we mark a lucky guess as if it were knowledge.
We fail if we mark delusion as no worse than ignorance. Good graduates are the ones who know when their work is good.

$$
\begin{array}{cccc}
\text { F } & \text { M } & \text { M } \\
\text { (i-c) } & \text { (ex) }
\end{array}
$$

F M F M
F M F M
(i-c) (ex)

F M F M
 (i-c) (ex)

F M F M
F M F M
(i-c) (ex)
(i-c) (ex)

